
Writing a Specification Page 64

Get It Done With MySQL 5&Up, Chapter 5. Copyright © Peter Brawley and Arthur Fuller 2017. All rights reserved.

TOC Previous Next

Writing a Specification
Modelling requirements Modelling tools

Define the actors Define the tasks Use cases Structure the database
Test the database structure

Whether the software you're about to write replaces paperwork with software, or replaces
old software with new, or solves a new problem, there is one way to begin: analyse the
problem in detail.

A convention in North America is to call this first design stage defining the business
problem. That usage is too narrow; the problem may be technologic, scientific, personal,
educational, commercial, govermental, or something else. What application software
problems have in common is not business problems but requirements. We model them by
defining exactly what tasks are to be done, who is to do them, how they are structured,
how their data is to be stored, and how the data maintenace software is to be structured.

Requirements modelling
In the early days of databases, and still in the early days of microcomputers, database
developers were often solving smallish problems
one at a time, often with databases that were simple
in structure and limited in capability. Design often
involved not much more than sketching a flow
diagram, inferring the database structure from the
diagram nodes, then writing the pseudocode.
Development was code-centric. The resulting
software was 2-tier, and the two tiers were
inextricably linked.

No more. The problems you are paid to solve now
are complex and multi-layered: the application will
be event-driven, it may interact with other software
running anywhere on the planet, it may be distributed across multiple computers in one
building, or on several continents; it may access multiple databases in one building or on
several continents, and hundreds or thousands or millions of users may be banging on it
at one time. Almost certainly it will be too complicated for a single flow diagram.

Sure, you can still work code-centrically. Depending on your pain threshold, you might
continue that way for a month or a year. But eventually the ghastly truth settles upon you:
the impulse to code has been your worst enemy. Absent a coherent design, unanticipated
requirements will require not just new code, but many a rewrite of code that is scarcely
out of the debugger. Your wheels spin. The art of programming, as opposed to the mere
act, lies in postponement.

Forty-five years ago, a middle-of-the-
road computer had 64K of memory and
filled a room. The internet was just an
idea. 25 years ago, a reasonable
microcomputer had four times that much
memory and sat on a desk. The internet
was still just an idea. Now a middle-of-
the-road laptop has 32,000 times as much
memory as that long-ago mainframe, is
thousands of times faster, and with one
click can connect itself to small or huge
databases anywhere on the planet, or to
any of a billion internet users.

https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdfmysqled1ch17.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch04.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch06.pdf

Writing a Specification Page 65

Delay writing code for as long as possible. Draw
sketches on napkins, or invest in an expensive
equivalent such as Sybase PowerDesigner—
whichever your method and budget, it is almost
always correct to postpone the actual coding. Write
detailed pseudocode.5 If the slightest ambiguity
remains in your specification, it is too soon to code.

To fully model an entire software project, you need
more than paper and pencil, more even than a tool
like PowerDesigner or Rational Rose. You need a
software lifecycle methodology, a lifecycle process
for requirements and technical issues:

• a full set of consistent concepts and models
• a collection of rules and guidelines
• a full specification of all deliverables
• a workable notation with good drawing tools
• a set of tried and tested techniques
• a set of appropriate metrics, standards and

test strategies
• define organisational roles e.g. requirements

analyst, software architect, programmer
• guidelines for project management and

quality assurance

Our concern here is the third bullet in that list—full
specification of all deliverables—and how to turn
that document into a correct database. You can
tackle it head on as we describe here:

1. Document all required tasks down to every
detail,

2. From [1], list all required attributes and actions,
3. Group attributes from [2] into entities, normalised tables, and relationships,
4. Turn all actions from [2] into queries, stored routines or application pseudocode,
5. Create a physical database from [3] and [4], and seed with test data,
6. Iteratively test and revise the database until no more errors are found.

Or you can model the job more creatively. Two main modelling approaches have
evolved, data flow and use case (Figs 5-1, 2). They combine nicely:

1. Identify the actors (persons or other systems) who will interact with the system,
2. Specify the tasks that the system must perform, including all required outputs,
3. Map actors and tasks to use cases until all requirements are accounted for,
4. Model use cases as entities, tables, and other database objects and routines.

Then you work out a user interface (UI) that your client can live with, and then, finally,
you code the application. When you finally get round to coding, you find that most of the
code writes itself straight from your requirements model.

Coping with impatient
project managers

The real world has bulimic budgets,
deadly deadlines, manic managers and
political pressures.Thanks to the
perfectionism and optimism that made
you a software developer, demanding
managers have you over a barrel. How to
cope?

1. A core managerial strategy is to divide
time-required estimates by 3 or more. To
compensate for this and avoid arguments,
multiply your time-required estimates by
3 or more before you submit them (an
instance of a famous rule for
consultants: begin with the bad news).

2. From client information specifiy all the
software's required outputs, and get
management to sign off on your list
before you estimate the cost. Analysing
all required outputs yields lists of all
required inputs, and protects you from
being blindsided by the inevitable "we
need just this one more report" that
breaks the specification two days before
you're due to go live.

3. Remember that eventually we are all
replaced, so when faced with impossible
demands, decide whether you prefer to be
replaced before failing to meet the
impossible demands, or after.

http://www. artfulsoftware.com/dbdesignbasics.html

Writing a Specification Page 66

Figs 5-1, 5-2: Data flow chart and use case modelling of database problems

Yes, there is debate about postponing UI design this long. Some think such postponement
may well wreck the UI. To find out why we disagree, read on.

Modelling tools
You have many possibilities, ranging from scribbling on a napkin, to writing out the
requirements in ordinary language, to bulleted lists, to homemade sequence and structure
diagrams, to spreadsheets, to auto-generating the database from a diagram built with
a modelling tool. Unified Modelling Language (UML), released in 1997 by Rational
Software Corporation and the Object Management Group, is the leading modelling
language; even if UML is more than you need, we recommend Terry Quatrani's excellent
introduction1 to it. If you have access to a UML modeller listed at http://www.uml-
forum.com/tools.htm, you will probably want to use it to design your databases.

Commercial database modelling tools are too rich for many budgets, but some are free or
affordable. Version 1.4.x of Clay Database Modeler, open source and user-friendly, runs
as an Eclipse plugin, and supports moving databases to and from many RDBMSs. For
how to get it and set it up see “Eclipse, an elegant IDE for MYSQL” on our MySQL Tips
page. Fig 5-3 shows a Clay model of the Northwind database. MySQL offers MySQL
Workbench, also free. It derives from DBDesigner 4 and is now stable. To produce the
equivalent of Fig 5.3 in MySQL WorkBench, click on Database | Manage Connections
to create a connection, then click on Database | Reverse Engineer and follow the
prompts. For this book we used Datanamic's Dezign for Databases. It is neither free nor
expensive, it does not do UML or use cases, but it makes GUI data modelling very easy,
and instantly generates robust SQL scripts from its models.

You may be muttering, who has time to write formal models?

http://www.omg.org/
http://www.uml-forum.com/tools.htm
http://www.uml-forum.com/tools.htm
http://www.azzurri.jp/en/clay/index.html
http://www.eclipse.org/
http://www.artfulsoftware.com/infotree/mysqltips.php
http://www.artfulsoftware.com/infotree/mysqltips.php
http://www.artfulsoftware.com/mysqlbook/sampler/mysqled1_appe.html#11-1
http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/
http://fabforce.net/dbdesigner4/
http://www.datanamic.com/dezign/

Writing a Specification Page 67

Fig 5-3: Northwind schema as seen in the Azzurri Clay modeller in Eclipse

Well, as the ad for auto engine oil says, you can pay now, or you can pay later. Pay now,
and you have a reasonable chance of delivering the application on time and within the
budget. Postpone the payment, and you can count on repeated code and database
revisions, and an increasingly unhappy client.

A sample project
To illustrate how this four-step modelling works, we apply it to a small-scale sample
requirement, for a web application that tracks contracts, projects, and their revenues and
expenses, for freelance technical professionals.

Writing a Specification Page 68

A prospective user might be a software
developer. Or the user could be a photographer, or a
graphic artist, or a carpenter, or an investment
advisor, or a florist or interior decorator—in short,
anyone who professionally undertakes jobs for other
parties, and who needs to track those jobs on a
computer. Or any group of such professionals, for
example a co-op. Contractors will be able to budget
and track tasks and costs, and invoice and track
payments, on a per-project basis.

An early bonus is that since the software will serve
as bookkeeper for contracts, it will be able to use
its bookkeeping smarts to manage its own user
accounts. It will track and bookkeep projects for
many kinds of contractor-client networks—
cooperatives, neighbourhoods, business networks,
skills exchanges and so on.

Step 1: Identify the users
A user is any person or system that interacts with the software--a definition that for some
projects will be wide and complex, but for this sample project means just human users,
who will come in three main flavours: contractors, clients, and the owner of the app.

Step 2: Define the software tasks
What must the software do? A good answer to this question frames the whole analysis.
The method is to start with a general list of application tasks. That list yields a
preliminary list of tables that the project will need. Then we drill down until we have
discovered all the details in each task needed to assemble any required output of the
software.

In the sample project, these application jobs are: to process and store information on
clients, contractors and their projects including details of those projects such as tasks,
charges, invoices, and payments. Right away we can see that the task list is not a
higgledy-piggledy job collection, but a neat matrix: for each of the entities we just listed,
the software has to do at least five things:

• add or create the entity, eg a user or invoice, under specified validation
constraints

• determine user access to the entity
• list instances of the entity -- ie browse with the capability of selection
• maintain the entity under specified validation constraints -- edit, copy, or even

delete it
• report the entity

An architecture professor gives his
students a blueprint of a house, saying
that the client wants to move this wall
two meters to the left, to make room for a
grand piano in the adjoining room. The
professor asks the students what it will
cost to move the wall. An enterprising lad
suggests that it depends whether the wall
is load-bearing: if it isn't, then the cost is
say $500; if it is, multiply by 10.
The professor replies, "Good, but wrong.
The cost is $1.25. At $125 an hour, the
architect cuts the wall and pastes it into
its new location, consuming 30 seconds
at most."
The longer you postpone coding, the
better off your client will be. Rushing into
implementation is the signature of the
amateur.

Writing a Specification Page 69

This first job list gives a preliminary list of the tables we need. There are eleven—users,
contractors, clients, addresses, professions, skills, projects, tasks, charges, invoices and
payments. So we have defined 55 software tasks (Table 5-1)—add, access, browse,
maintain and report each table. (Are we going to build this entire project in this book?
Relax. No. We use it mainly to illustrate basic database and query design principles.)

Table 5-1: Matrix of application entities and basic tasks
Entity Add Access Browse Maintain Report

parties add party registration path, or party
adding client or contractor

browse, lookup
contractor or client

party edit,
update admin only

users add user
profile user login, or party browse user account global for admin, or of party,

contractors, or clients
addresses add address party or delegate browse edit, update probably admin only

professions add
profession ditto ditto ditto

global for admin, or of
parties, contractors, or
clients

skills add skill ditto ditto ditto ditto
projects add project ditto browse, lookup,

selection ditto one-off, for contractor or
client

tasks add task scoped to project scoped to project ditto of project
charges add charge ditto ditto ditto one-off, for party, contractor,

or client
invoices create

invoice ditto ditto (careful here!) ditto

payments add
payment ditto ditto (careful here!) ditto

roles add role admin only browse edit, update list

As we drill down, the matrix may grow or shrink, and may get ragged on its right edge.
We can tinker with the matrix's rows. Are clients and contractors necessarily different?
No. Party A may be contractor to party B in project X, and may be client to contractor
party C in project Y. We want the system to model any party as contractor or client.
Client and contractor are roles, not entities. The basic entity is a party.

Next, with contractors and clients collapsed into parties, we notice that addresses,
professions and skills are "children" or subtables of parties, just as tasks, charges,
invoices and payments are children of projects.

Now, how do users and parties relate? The software should use its bookkeeping smarts to
manage the relationship between the user and the application owner, so using the
software puts every user into a direct or indirect client-contractor relationship with the
application owner. A party known to the system may use the software only if the party
has enrolled in the system. All users, then, are enrolled parties, or delegates of parties.
But there will be parties who are known contractors or clients yet who are not users. And
some parties may be enrolled, but may delegate use of the software to subordinates, for
example employees. So some parties are not users, but enrolled parties have users.

We may not yet understand all nuances of who is who, but we have learnt this much:

• a party may be contractor and client in different contracts,

Writing a Specification Page 70

• enrolled parties have users; in fact having a user defines enrolment.

So in the first pass at an entity list, contractors, clients and users have become parties
and users (Table 5-1, column 1), and we are down to ten entities. Five basic tasks for
each yield a starting (or perhaps startling) list of 50 application tasks, and some not
spotted yet. More than 50 tasks to analyse! Wasn't this supposed to be a small project?
Fortunately, many tasks will be virtual copies of other tasks. For example, every task of
browsing party or project subentities must scope to the respective party or project (Table
5-1, column 4)—opportunities to use one object or module to accomplish several tasks.

To model how all system actions mesh together, and how the software will contol the
flow of action states, we will need quite a few meetings with prospective users, and if a
client hired us to write this, with the client. We may need to build UML activity
diagrams. All that is beyond our present scope.

We made a start on column 1, the entities. What about the task columns? Add, browse,
maintain and report are straightforward. What about access? A user profile defines what
a user may do in the system. At one extreme, everyone in the enterprise might be able to
execute process A; at the other, only the CEO may execute process Z. In most
enterprises, these permissions are cumulative as you move up the hierarchy. A project
manager should be able to enter a new city name in a cities table, for example, but so
should any data entry person in the enterprise. Only a manager can adjust a final balance.

For every user known to the system, must we keep track of 5x10=50 or more
permissions? That would be a maintenance nightmare. There is a need for encapsulation
under basic organising concepts. There are three main general approaches4: role-based,
rule-based, and mapping via a special-purpose access policy language. Role-based
approaches can accommodate rules if desired, and do not require language extensions, so
we group permissions into roles. Permission management by role definition has a name,
role-based access control (RBAC), and a literature of its own. RBAC defines both user
roles and session roles. In this first first-pass model we begin with four user roles:

• the party-level clerk, who can do simple data entry on behalf of one party,
• the party-level manager or owner who can make more advanced party-level

decisions, for example set budgets or suspend charges,
• an overall administrative clerk who can assist all clerical users, and
• an overall application owner or manager who can see and do everything possible

in the system.

For simplicity we name the first two of these levels clerk and owner, and the latter two
admin clerk and admin owner. But we do not set these four roles in stone. Or in code. We
implement them as data, so we can add more roles later, as the need arises. Individual
parties may wish to define specific user roles, and we will likely have to differentiate the
overall application owner role into its component parts, for example database
administrator (DBA), database maintener (DBMAINT), system security officer (SSO),
system operator (SYSOPR), and application manager (APPMGR).

By analysing a column in our task matrix, then, we discovered a heretofore unnoticed
entity, roles, and added that row to the task matrix.

http://www.cis.scu.edu.tw/%7Ewhhe/is/02102615490609818.pdf

Writing a Specification Page 71

At the end of Step 2, we have a plausible matrix of tables and tasks. We are ready to drill
down to the details.

Step 3: Specify use cases
In his classic book "Object-Oriented Software Engineering"2 , Ivar Jacobson introduced
use cases to the development world. Put simply, a use case describes one task that an
actor can perform with the software.

Like many brilliant ideas, this one was so simple and obvious, everyone had overlooked
it. Once Jacobsen had stated it, however, it almost instantly became an important method
for writing software requirements. Now use cases are an important UML feature.

Developers of large, complex and expensive software almost always employ use cases.
Unfortunately, developers of smaller and less expensive systems often skip this stage,
believing that the time and effort required is not available within the budget. We beg to
differ. If you don't have a full description of the system's functionality, how will you code
it, how will you know when it works correctly, how will you know when it is finished?
How will you know which capabilities are critical, which are nice-to-have, and which
cannot be delivered on time? Often the largest problem of software development is
managing the expectations of your users. Use cases are the most effective way to do that.

There are two kinds of use case: essential, for design, and real, for prototypes or actual
builds. Here we are concerned with the design phase. In their excellent book on
UML3, Fowler and Scott offered this definition of the use case:

A use case is a typical interaction between a user and a computer system
[that] captures some user-visible function. [and] achieves a discrete goal
for the user.

It is a story, or case, of one specific use of a system. The word user is more intuitive here
than actor. We go with user.

We could take Fowler's definition to absurd extremes: the user types the A key, and the
system responds by adding the letter A to the document. So, typical interaction has to be
undertood with common sense. If you like, insert a word like significant before user-
visible .

And right away we have an opportunity to apply some of that commonsense. Every task
implies an access use case: is the user permitted to do this, or not? We are not going to
list all access use cases separately. Thanks to RBAC, access will map to user roles,
maintenance of which can also be analysed as one use case. We will treat just one access
use case, user login, separately. Otherwise we analyse access (Table 5-1, column 3) only
where it needs attention. Similarly we know in advance that every table we derive from
this analysis will need maintenance (Table 5-1, column 4) and therefore a maintenance
use case where permitted users may add, modify and report table contents under the
system's constraints. We will take up maintenance use cases in detail only where they
present particular issues (hoping that sooner or later the system will acquire a module that
automatically generates, for each of its tables, a maintenance interface implementing all
the system's rules for that table.)

Writing a Specification Page 72

What goes into the analysis of a use case?
A use case describes how a user will interact with the system. For example when a user
logs in:

• the system offers input fields for username and password
• on submission, the system validates user input
• if validation passes, the system logs user in
• otherwise, the system offers choice of re-login or registration

As we analyse use cases, to simplify later collection of column and table requirements we
will mark items that need to be database columns thus when they first come to our
attention, and their tables thus. In most cases, the table to which a column belongs will
be obvious. In some cases it will not, or what is initially obvious will change as a result of
normalising the database.

Use case analysis is not for the literal-minded. We already saw that access, user roles
and maintenance for most or perhaps all tables can be abstracted as single use cases. Not
all remaining use cases need separate analysis either. Because our focus here is on
database design, we break use cases down only as far as needed to reveal consequences
for database structure.

Nor need we begin at the beginning of the software use cycle and proceed lockstep to the
end. True, there is an intuitive advantage in sussing out use cases by walking a
prospective user from login to session termination. But restricting ourselves to that
sequence may obscure use case structure. So we will remember to look for opportunities
for generalisation, and we begin at the top left corner of the task matrix (Table 5-1), with
what creating principals and creating users have in common--the basics of creating a
party.

Use case: add a party
Under what circumstances may a user add a party?

• when the user is enrolling in the system as a party, or
• when the user wishes to add the party as a client or contractor.

Remember that adding a party makes the new party a potential contractor or client. The
system displays a form for filling out name, company name, addresses, email address,
voice phone, fax phone, cell phone, and professions and skills offerings.
Addresses, professions and skills will have add/edit forms that must be available to
the add party page. Any party may have multiples of each. When enrolling, the party
being entered is to be a user, so after party information is complete, the page must send
the user to

• the add account page to establish the party's contract or project with the admin
owner, and

• the add user profile page.

So adding a party may invoke up to five other use cases. When the user submits input, the
system validates the input. If it passes, it creates a new party with at least one address,

Writing a Specification Page 73

zero or more professions and skills entries, and zero mor more user rows. If the input fails
validation checks, the user is returned to the form. Every input form has to do all this. To
minimise repetition, we call it validation/submission.

Use case: add a user profile
A user may get to the add user profile functionality

• from the task of enrolling in the system
• from the task of adding a user

The user profile consists of username, password, user role, and a key pointer to a row
in the delegates or parties table. The system determines the value of key from the identity
of the party whose page the user has arrived from, and puts up username and password
input fields for the user to fill out. It determines role from the same page:

• if the page data was of a party, the user is an owner
• if the page data was that of a delegate, the user is a clerk
• if the page data was that of the application owner, the user is admin owner
• if the page data is an admin owner delegate, the user is an admin clerk

More elaborate role definitions are left as exercises for the reader.

And here we find another unanticipated use case. How is the system to know that a just-
registered user is actually a clerk for existing user so-and-so? Obviously, only the user's
manager can specify this, and must have done so before the clerk logs on, so we make a
note that user profile maintenance must include, for managers, a form for pre-registering
clerks that permits entry of enough information to permit the clerk to log in.

Use case: user login
User login determines a candidate user's access to the software. A user, registered or not,
arrives at the application entry page. If the user is registered, she selects the dialog for
registered users and submits her name and password for login. The system validates the
name, password and account status, and logs her in, noting her user role, if she passes
validation checks.

Validation fails if the user is unknown, if the password is incorrect, or if there is a
problem with the account (overdue fees, inactive for some other reason). In the latter
case, the user may proceed to the user account page to straighten out the access problem.

The user who has not yet registered may select the user registration process, or visit a
page describing the purpose of the web site (a use case not shown in Table 5-1, and
which makes that matrix ragged by adding only to the users row).

So the user login use case has these elements:

• prompt user for username and password
• login if authenticated, otherwise re-prompt
• connect to user account, registration info and account profile pages

Writing a Specification Page 74

Use case: user account page
The account page should be available from the user profile page, and from the user login
page when there is an account problem that blocks login. Logically, a user account is a
project with the admin owner as contractor and the user/party as client. Its subprojects
(tasks) will be subscription terms. It can handle multiple invoices and payments,
specifies the user's payment information, which the user may update, and shows account
status (active, inactive, suspended, etc). Sensitive information is stored in encrypted
fields.

Obviously this use case is an instance of the review/maintain project use case, which the
system should implement in a perfectly general way. The user account page will then be
just a call to the general account review page, specifying the user as client and the admin
owner as contractor. We leave that general design until we are doing project use cases.

Use case: administer user roles
Obviously, role administration use cases will be available only to admin owners and
admin clerks, who have to be able to determine

• permissions for every role for every use case, and
• user role assignments for every user

A basic RBAC provides a set of defined user roles (roleID, name, rank). Rather than
assume that our list of fifty-something use cases and four user roles is set in stone, the
system should offer to admin owners and admin clerks dynamic cross-tabbed updateable
views of users, roles and use cases with add, edit and report functionality built in,
permitting editing and addng of roles, and assignment of roles to users and to use cases.

Use case: permission check
This is related to user role adninistration. For each application activity that a user wishes
to execute, the system must determine whether that user's role permits that action.
Permission checking will use the database, but does not imply any additional columns or
tables (unless the client needs to keep records of permission checks, but we aren't going
there yet).

Use case: pre-register additional party user
This is a variant of the add user profile use case, with these differences:

• a user who is a party is creating a user profile for a subordinate or co-worker

• the new user profile will 'inherit' all the party's projects, or a subset of them; it is
the party's responsibility to make these assignments

• the new user profile will 'inherit' all the party's permissions, or a subset of them;
again the party makes these assignments

Writing a Specification Page 75

• a party may wish to define clerk role classes for grouping project permissions; we
make a note that project and user tables will need a nullable clerk group
attribute

All we know, at this point, is that somewhere in the application, owner parties need
access to this functionality. The details, we leave for later.

Use Case: Contractor selects project
Most user activities are scoped by the project to which they relate, so to begin work on a
project, a user must select the project of interest. On being asked, the system provides
browse access to all projects for which the user has permission, and provides an option to
select a project or create a new one.

Use Case: Contractor adds project
The user indicates a desire to create a new project. In database terms, this means adding a
row to the projects table. The system responds by displaying a form for the user to
enter the project name, client, budget estimate, commitestimate, chargesToDate,
startingdate, targetcompletiondate, description, and a nullable externalkey
column for optionally relating the project to an external tracking or accounting system.

When the user is specifying the project client, the system presents the user's client list,
and also provides the option to create a new client. Here is an example of one use case
making use of another. Rather than describe the task of creating a new client as part of
the current use case, we simply mention that it provides this option.

A project has one or more tasks, each with its own estimate, so the add project use case
implies a task browser use case (tasks table: projectID, taskID, name, description,
subcontractorID, datecreated, createdby, startDate, targetdonedate,
completiondate, signedoffby, signoffdate, estimate), with the capability to add,
modify and void.

Note the simplifying assumption, which could come back to bite us later, of there being
one subcontractor at most per task. And estimates change, so lurking behind the task
browser use case is estimate change tracking, which we implement with the simple
concept of budget items.

Use case: contractor adds budget item to project task
To cost a project task, a contractor must be able to add and edit task budgets. A simple
model is to have a budgitemtypes table—for example with types='original', 'change' and
'final', but we can leave this entirely to the users—and a budgetitems table which
records the item type, amount, date entered and so on, to which a user will write an entry
for every addition or update of a task budget. The project management interface, then,
needs to provide convenient browse access to task-scoped budget items.

Writing a Specification Page 76

Use case: contractor adds or edits profession or skill entries
Skills vary within professions, so treating their use cases as equivalent is suspect.
Database design can be an obsessive's delight—until the obsessively designed system
collapses under the weight of its own quibbling. For simplicity's sake we let skills stand
free, and we provide users with a way of linking a skill to a profession.

Now we see that a party

• is a potential contractor if the system has professions or skills for the party,
• is obviously a contractor if there are projects where the party is contractor.

When a party indicates a desire to add a profession or skill, the system will present a list
of the party's registered professions or skills, if any, and an opportunity to add to either
list from a lookup list of available possibilities, with options to select from or to add to
the lookup list, and to link a skill to a profession. This use case thus becomes several: for
each of professions and skills, the system permits browsing one's own list, adding to
it, deleting from it, browsing the master list, adding to the master list, or (subject to
permission) editing the master list. On this last use case, can party B edit party A's master
list entry? Complexities loom. We opt for the simplest possible solution:

• a profession or skill has a flag determining whether other parties may modify it
• a profession or skill added by an admin owner or admin clerk is unmodifiable

Analysing use cases for professions and skills, uncovered the specifications for these
tables: professions (profID, profName, profDesc, modifiable), skills (skillID,
skillName, skillDesc, modifiable), partyprofessions (partyprofID, partyID) and
partyskills (profID; partyskillID, partyID, skillID).

Use case: Contractor adds charges to a project
The user indicates a desire to add charges to the selected project. The system responds by
displaying a form displaying charges information (date, chargetype, unit, quantity,
subcontractor if any, invoiceno if any, description, amount). The user submits the
form, and the system adds the charge to the selected project.

Again another use case turns up: charge type selection (e.g., labour, materials, expense,
rental, adjustment, etc), so we need a chargetypes table (chargeTypeID, name,
description, code, externalCode). And that simple approach hides the deeper problem
of meta-chargetypes, e.g., category (labour, materials), type (original, adjustment), above
or below the line, which we also leave as an exercise for the reader.

Use case: Contractor suspends a charge
For audit integrity, the system prohibits charge deletion, but a contractor must be able to
move charges between charges and suspendedcharges tables. A suspended charge has
all charge attributes plus suspensedate, suspendedby, suspensereason, resolution.
This can also lead us into a set of related use cases and their subtables (for example
sentcorrections and resolvedsuspensecases) which we also defer for now.

Writing a Specification Page 77

Use case: Contractor resolves suspended charge
The system permits the contractor to write off a suspended project charge, to re-post it, to
adjust it before re-posting it, or to return it to its source for further processing, providing
documentation in each instance.

Use case: Contractor creates and sends an invoice
Enter project, amount, date, and client. Select the project task items to invoice. The
system prepares the invoice and on approval

• prints or transmits it,
• adds an invoice record for it.

The invoices table thus has invID, projectID, createdby, invdate, amount, and a
child table invoicelineitems with invitemID, taskID, description, amount, qty,
unitprice, tax, discount. Relational purists may be appalled that we risk skew by
storing an easily calculable invoice.amount, but accountants will be appalled if we do
not, and accountants control our pay cheques.

Use case: Contractor enters a client payment
Enter payment amount, invoicenumber, date, payment method,
authorisationnumber, authorisationdate, authorisationmethod, authorisedby.
The system enters it in the payments table. This use case implies another use case:
paymenttypes (purchase order, cash, credit card, on account, etc).

Use case: Report revenue and expenses
The bottom line use case—report revenue, expenses, and their details, for the
beancounters . Here, unexpected details often turn up. Although not central to this
chapter, it is a use case to analyse very carefully in real-life application design.

Use case: Report projects and their status
List all project attributes for all or specified projects.

Reviewing the Specification
We do not imagine that each of these use case specifications is perfect or final. They
illustrate the process, is all. With them, the application rapidly takes shape. We can
almost see the web pages required, because use cases are driving them. It's a good time to
go to bed, get some sleep and prepare for morning's harsh light.

Given that this sample project does not have a real client, we phone a few colleagues and
arrange some walkthroughs.

Brando, a graphic artist, points out that most of his gigs are flat-rate, $300 no matter how

Writing a Specification Page 78

long it takes. Very occasionally he gets an hourly rate. We have this covered.

Meryl, a website developer, works for a regular hourly rate. We have her case covered.

Isabella, a freelance architect, points out that in her business, the project description
might be a hundred printed pages, plus several graphics printable only on an expensive
plotter, plus an AutoCAD VR-walkthrough. Make a note to include an infopath column
in the projects table.

Marla, a private investigator, points out that in her business you keep your head down
and your mouth shut, and you definitely do not enter your client list on the internet. She
is not a prospective user.

Asanga, a WannaBeGuru (Linux), points out that the most important thing in his life is
figuring out how to finance his daughter's admission to Harvard. To him, we can only
suggest that our app may not be helpful, unless he is prepared to define his daughter as a
project. We'd rather not go there.

Pat, a Husserlian psychologist (that discipline is like proscuito—best sliced thin), adds
that she bills many clients at unpredictable rates. As fans of and participants in academe,
we are more than receptive to this perspective. We have her use case covered.

Andrea, a Celtic jewelry artist, objects that there are no projects, there is only art. "I do it
all, right down to the layout of the newsletter, which I email to my list in PDF format."
We have her covered: subcontractors are optional.

Glen, a jazz saxophonist, points out that on most of his projects he is a sideman, while on
a few he is the principal. Each project has a Principal (what we have called a
contractor), this much is obvious. On each project there are zero or more
subcontractors. Now we begin to appreciate Glen's problem. On Project P he is the lead,
and you work for him. On Project Q you are the lead and he works for you. As you log
your hours on various projects, you must select the project. The system should know
whether you are the principal or the sideman. But at the end of the day, you want to know
how much money will arrive before the end of the month from all projects. Do we have
this covered? Yes. When Glen is principal, he can set himself up as contractor and set up
each sideman as the contractor in a project subtask. When he is sideman, he needn't
concern himself with all that--as far as he is concerned, he is the contractor and the
principal is his client.

Several colleagues remind us that there are persons and companies. This amounts to
deciding whether parties.name or parties.company is the name of interest.

Step 4: Map and derive the database structure
Now from the case analyses we derive entities, their attributes, and the relationships
between entities. We may start with an entity-relationship diagram (ERD) from which

Writing a Specification Page 79

we deduce tables, columns, keys and relationships. Or as in Fig 5-4 we can go straight to
the tables. Either way, the result defines all tables—their names, primary keys (PKs),
other columns, and relationships expressed as foreign keys (FKs) referencing other tables.

A relationship between tables A and B defines how A and B relate via their keys:

1:1: for a PK value in A there is at most one matching key value in B, and vice versa;
1:many: for a PK value in A there can be many matching FK values in B; for each
matching row in B, however, the FK value matches one matching PK value in A;

many:many: a row in A can match many rows in B, and vice versa. An M:M relation-
ship needs a bridge table C where each row in C refers to one A row and one B row.

With most modelling tools, you begin with the table names and PKs, then add in the
columns (for example username and password for the users table), then add the
relationships between entities. Even if your tool is a text editor, this approach works best.

Starting then at the top left corner of Fig 5-4, roles may consist of multiple use cases, a
user may play multiple roles, and roles may be played by multiple users, so roles is 1:M
with usecases, and roles and users table are M:M, mediated by the userroles table's
pair of 1:M relationships with roles and users.

The users table will have a double 1:M relationship with every table that tracks
modifications by recording the userID of the user who adds (insert privilege) or modifies
(update privilege) a row. Since users modify the users table, it has a reflexive relationship
with itself—that is, every row has an entered_by value that points to another userID.

To the right, parties, with everything except its PK and name columns exported
to addresses, party_professions, and party_skills, has a double 1:M relationship
with contractor_client to model contractor-client relationships. In turn, a
contractor_client row may be referenced by multiple projects, which in turn may
have multiple project_tasks, each of which has a pointer to a row in tasktypes.
Similarly, in the top right corner addresstypes has a 1:M relationship with addresses.

The professions table is the system's list of professions, and has a 1:M relationship to
the skills table. Notice its relexive relation, to model the possible dependency of one
profession on another. The system will keep party_skills in a table where each row
points at one skills row and one parties row, and party_professions in a table
where each row will point at one professions row and one parties row.

Project task budgeting is modelled by the fact that any project_tasks row may be
referenced by multiple rows in budgetitems, which in turn has a 1:M relationship to
charges to permit tracking of charges against task budgets. To handle charge errors,
allow movement of charges to a suspense table, and thence to correctedcharges.
 Invoices may have multiple invoiceitems, each of which points to a row in
project_tasks. The pmt_types table has a 1:M relationship to payments, to which
invoiceitems has a 1:M relationship to support partial payments.

Writing a Specification Page 80

Figure 5-4: Schema for tracker database

Writing a Specification Page 81

Testing and correcting the database model
Test one is to create the actual database. If we wrote the spec with a database modelling
tool like Dezign that can generate DDL, we can create the entire database script with a
button click. Otherwise, we have to write the SQL scripts ourselves. However we get it
done, with script at hand we fire up a GUI MySQL client and tell it to run tracker.sql,
or we hand the script to the command-line MySQL client with this:
mysql -uUSR -pPWD <tracker.sql

If the server bellyaches about errors, we correct the charts and script and try again, over
and over again if necessary, till we get it right..

Test two is to enter representative data. Run:
mysql -uUSR -pPWD <tracker_pop.sql

Then write the queries for every required application output--invoices, customer and sales
lists, inventory lists, or whatever the application will be required to produce. This is the
very best way to find errors in your model. Notice the implication for the application
development trajectory: write all queries before writing any application code.

Test three, too often skipped, is to build detailed sequence/flow diagrams for each use
case, and verify that the database receives and returns exactly what is expected.

Test four is to translate those diagrams into pseudocode. Amazingly, even at this stage,
you will find holes that have to be plugged.

Structuring the application
Can you now just write the code? Not quite. Where is the code to run? What code runs on
the client? On the server? In middleware? How many tiers is the application to have?
Here, there are two contrasting philosophies to choose from, for guidance: n-tier design,
and 2-tier design with stored procedures.

N-tier design provides flexibility. A correct model should let you swap out the frontend
(user interface), the business logic or the database without requiring much change to
other layers. The front end communicates with the business logic layer, which in turn
communicates with the database. There may be another layer between business logic and
database to translate for a particular DBMS. The frontend never directly communicates
with the database. The business logic layer uses a generic API to communicate witht the
database, whose job is conceived, mainly, as simply information storage.

But no software executes in zero time so this flexibilty costs performance. This is where
stored procedures usually make their pitch, inviting you to embed business logic in the
data layer for a gain in performance. An excellent trade, usually, but not yet with
MySQL, whose stored routines are not compiled.

Still, distiguishing between business logic and database logic helps. Whether a customer
gets credit or not is a business decision; that decision belongs in the business layer.
Whether an project item may be entered without a foreign key tying it to the projects

Writing a Specification Page 82

table is database logic; that code belongs in the data layer. Before any code is written,
you will save yourself many later hassles if you take the time now to get very clear on
how your application is to implement this distinction.

Plan reporting now
Information worth saving in a database will almost inevitably need to be reported across
years or decades. Pentaho and Jaspersoft make good open source ETL tools that work
well with MySQL.

Summary
In this chapter we modelled specification analysis as it relates to database design. The
four modelling steps are (1) identify users, (2) identify tasks, (3) analyse use cases, and
(4) derive required tables. We applied the model to a small sample project that we will
revisit to create the actual database in Chapter 6, to design some queries in Chapter 9, to
illustrate PHP, Perl, Java and .NET application development in Chapters 12 through 15,
and to look at writing RBAC-based security routines in Chapter 19.

References
1. Quatrani, Terry. Introduction to the Unified Modeling Language.
http://www.rational.com/media/uml/intro_rdn.pdf.
2. Jacobson, I. Object-Oriented Software Engineering. 1992. Addison-Wesley, Reading, MA.
3. Fowler, M & Scott, K. UML Distilled. 1997. Addison Wesley Longman, Inc, Reading, MA.
4. Gebel, G. Access Management: Is there a role for RBAC? (no longer publicly available).
5. Dalbey, J: Pseudocode Standard. http://www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html

TOC Previous Next Last updated 26 Sep 2016

http://www.pentaho.com/
http://www.jaspersoft.com/
http://www.rational.com/media/uml/intro_rdn.pdf
http://www.csc.calpoly.edu/~jdalbey/SWE/pdl_std.html
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch04.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch06.pdf

	Writing a Specification
	Requirements modelling
	Modelling tools
	A sample project
	Step 1: Identify the users
	Step 2: Define the software tasks
	Step 3: Specify use cases
	What goes into the analysis of a use case?
	Use case: add a party
	Use case: add a user profile
	Use case: user login
	Use case: user account page
	Use case: administer user roles
	Use case: permission check
	Use case: pre-register additional party user
	Use Case: Contractor selects project
	Use Case: Contractor adds project
	Use case: contractor adds budget item to project task
	Use case: contractor adds or edits profession or skill entri
	Use case: Contractor adds charges to a project
	Use case: Contractor suspends a charge
	Use case: Contractor resolves suspended charge
	Use case: Contractor creates and sends an invoice
	Use case: Contractor enters a client payment
	Use case: Report revenue and expenses
	Use case: Report projects and their status

	Reviewing the Specification
	Step 4: Map and derive the database structure
	Testing and correcting the database model
	Structuring the application
	Plan reporting now

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

