
MySQL Command Syntax Page 85

Get It Done With MySQL 5&Up, Chapter 6. Copyright © Peter Brawley and Arthur Fuller 2018. All rights reserved.

TOC Previous Next

MySQL Command Syntax
Structured Query Language MySQL and SQL MySQL Identifiers MySQL Operators Comments

Connections and sessions
SET USE

Data Definition Language
CREATE DATABASE ALTER DATABASE RENAME DATABASE DROP DATABASE

CREATE | ALTER | DROP SERVER CREATE | DROP SPATIAL REFERENCE SYSTEM
CREATE TABLE

CREATE definitions Column defs Silent column changes Keys PARTITION CREATE…SELECT
ALTER TABLE DROP TABLE RENAME TABLE CREATE | ALTER TABLESPACE

CREATE | ALTER LOGFILE GROUP CREATE | ALTER | DROP VIEW
CREATE INDEX DROP INDEX CREATE | ALTER | DROP EVENT

CREATE | DROP FUNCTION CREATE | DROP TRIGGER
Database Administration Commands

ANALYZE TABLE CHECK TABLE CHECKSUM TABLE OPTIMIZE TABLE REPAIR TABLE
BACKUP TABLE CACHE INDEX GET DIAGNOSTICS INFORMATION_SCHEMA

DESCRIBE FLUSH KILL LOAD INDEX LOCK INSTANCE RESET RESTART SHOW
Database user administration

CREATE | ALTER | RENAME | SHOW CREATE USER DROP USER
CREATE | DROP ROLE GRANT REVOKE SET ROLE

Replication Commands
CHANGE MASTER TO PURGE BINARY LOGS RESET MASTER RESET SLAVE

START SLAVE STOP SLAVE
Data Manipulation Language

SELECT
Qualifiers Expression INTO FROM and JOIN WHERE ORDER BY

GROUP BY OVER() WITH HAVING LIMIT FOR UPDATE
Other DML commands

DELETE DO EXPLAIN HANDLER INSERT LOAD DATA INFILE LOAD XML LOCK/UNLOCK
PREPARE REPLACE RLIKE | REGEXP TRANSACTIONS TRUNCATE UNION UPDATE

Structured Query Language
Structured Query Language (SQL) is a non-procedural computer language, originally
developed in the late 1970s by IBM at its San Jose Research Laboratory.

Let's begin with how to pronounce it. The American National Standards Institute (ANSI)
wants it pronounced ess-kew-ell. The International Standards Organisation (ISO) takes no
position on pronunciation. Many database professionals and most Microsoft SQL Server
developers say see-kwel. The makers of MySQL prefer my-ess-kew-ell. Take your pick.

Although the 'Q' in SQL stands for 'Query', SQL is a language not only for querying data,
but for creating and modifying database structures and their contents, for inserting,
updating and deleting database data, for managing database sessions and connections,
and for granting and revoking users' rights to all this.

https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch05.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch07.pdf

MySQL Command Syntax Page 86

Traditionally, SQL statements specify what a DBMS is to do, not how the DBMS is to do
it. So SQL is a partial computer language: you cannot use it to produce a complete
computer program, only to interface with a database. This you can do in three ways:

• interactively: in a standalone application with a MySQL command interface, or
• statically: you can embed fixed SQL statements for execution within programs

written in other languages (Perl, PHP, Java, etc) or
• dynamically: you can PREPARE SQL statements, and you can use other languages

to build runtime SQL statements based on program logic, user choices, business
rules, etc., and to send those SQL statements to MySQL.

With many RDBMS products, the line between specifying what the RDBMS is to do, and
how it should do it, is blurring; for example MySQL has syntax for telling the query
optimiser how to execute a particular query. Since MySQL is an open-source product,
you can, in theory, rewrite how MySQL does anything. In practice you are not likely to
try that on a large scale. But MySQL has had, traditionally, an interface for writing user-
defined functions (UDFs), and with 5.1 MySQL introduced an API for user plugins.
In general a SQL statement …

• begins with a keyword verb (e.g., SELECT),
• must have a reference to the object of the verb (e.g., * meaning all columns), and
• usually has modifiers (e.g., FROM my_table, WHERE conditional_expression)

that scope the verb's action. Modifying clauses may be simple keywords (e.g.,
DISTINCT), or may be built from expressions (e.g., WHERE myID < 100).

Table 6-1: SQL Statement Components
Component Type Use Examples

verbs keywords action descriptors SELECT, JOIN, UPDATE,
COMMIT, GRANT

object, type names keywords general object references TABLE, VIEW, DOMAIN,
INTEGER, VARCHAR

function, variable names keywords function and variable references MAX, AVG, SESSION_USER

conjoiners keywords conjoin verbs & object references FROM, WHERE, WHEN

modifiers keywords define scope ANY, TEMPORARY

constant values keywords defined constant values TRUE, FALSE, NULL

identifiers string
literals

names of schemas, databases,
tables, views, cursors, procedures,
columns, Authorization IDs, etc.

tableName.columnName,
"columnName"

operators symbolic relate variables and values <, <=, =, >, >=, LIKE, *

literal values literals data 1006, 'Smith', 2005-5-20

Clauses, expressions and statements are built according to a set of simple syntactic rules
from keywords (verbs, nouns, conjunctions), identifiers, symbolic operators, literal values
and (except in dynamic SQL) a statement terminator, ';'. Table 6-1 lists the nine kinds of
atoms used in SQL to assemble SQL expressions, clauses and statements.

The set of all SQL statements that define schemas and the objects within them, including
tables, comprise the SQL Data Definition Language (DDL).

MySQL Command Syntax Page 87

The set of SQL statements that control users' rights to database objects comprise the Data
Control Language (DCL). Often DCL is considered part of DDL. SQL statements that
store, alter or retrieve table data comprise Data Manipulation Language (DML).

SQL also has:
• connection statements, which connect to and disconnect from a database
• session statements, which define and manage sessions,
• diagnostic statements, which elicit information on the database and its operations,
• transaction statements, which define units of work and mark rollback points.

This much, most SQL vendors and users can agree on. But no implementation of SQL is
identical to any other. Variation is the exceptionless rule. ANSI and ISO have approved
SQL as the official relational query language. ANSI has issued five SQL standards:
SQL86, SQL89, SQL92, SQL99 and SQL2003. SQL92 remains a common reference
point, with three levels: entry level, intermediate and full. SQL99, in contrast, has no
levels but rather core and other features: what was entry-level in SQL92 becomes core in
SQL99. Several commercial vendors implement an SQL variant known as Transact-SQL
(T-SQL). And so it goes.

The MySQL variant of SQL
MySQL 5 complies with entry-level SQL92, implements
much of SQL99, has some features of T-SQL and SQL
2003, and extends ISO SQL in other ways for performance,
ease of use and support for modern features (see Markus
Winand’s excellent review). 5.0 brought stored routines,
updateable Views, Triggers, information_schema and XA
transactions, 5.1 partitions. 5.5 SIGNAL and RESIGNAL and
LOAD XML, and 5.6 GET DIAGNOSTICS. Version 8 adds SQL
roles, recursive Common Table Expressions (CTEs) and
windowing functions.

MySQL AB said its eventual aim was complete ISO SQL compatibility. Oracle has not
publicly adopted that goal. In any case, with five official definitions, ISO SQL is a
moving target, fully implemented by no vendor!1-4 Is a SQL feature implemented by no
vendor actually SQL? Does SQL consist of the five sets of ISO standards, or the union of
all commands implemented by all SQL vendors? Is a feature implemented by many
vendors "SQL" before it appears in a subsequent version of the standard? Impossible
questions, all. Yet we need a usage that makes sense. Here is our rough take. A feature is
SQL if it is in one of the five published standards, or if it is commonly implemented by
vendors. Whether missing SQL functionalities like those listed in Table 6-2 matter to you
depends on your database requirement.

Notable MySQL variations from SQL92
Transactions: To enable transactions on a table, create it with a transactional storage
engine. The MySQL MYISAM database engine is transactionless, but since version 5.5 the

Table 6-2: Some SQL basics still
missing from MySQL

Check Constraint*
Update subqueries

Nested transactions, Queues
Full Outer Join, Assertions

* supported by MariaDB 10.2.1 and later

https://modern-sql.com/blog/2018-04/mysql-8.0

MySQL Command Syntax Page 88

default engine is the mainly ACID-compliant INNODB engine. Since 8.0 MySQL systems
tables use this too.

Foreign Keys: MySQL accepts FOREIGN KEY syntax, but implements it only if the table
uses a transaction engine, e.g., INNODB; if the table uses a transactionless engine like
MYISAM, the foreign declaration is ignored.

CREATE | DROP VIEW: MySQL Views did not support FROM clause subqueries until
version 5.7, a serious limitation. MySQL Views still do not optimise well.

SELECT INTO TABLE: MySQL supports not SELECT ... INTO TABLE ... but the
equivalent INSERT ... SELECT

Definition of a user: Here MySQL goes its own way. A MySQL user is defined by an
authentication ID or authID in the form user@host, where user is the user name, and host
is the network address from which the user may connect. Since 8.0 (and MariaDB
10.0.5), user may also name a role, which is thus a named privilege set; users may be
assigned roles and vice versa.

Other deviations of note from SQL92 and SQL99. MySQL provides the functionality of
DECLARE LOCAL TEMPORARY TABLE via CREATE TEMPORARY TABLE and CREATE
TABLE ... ENGINE=HEAP. Other DDL elements awaiting implementation are: schemas
within databases, CREATE/DROP DOMAIN, CREATE/DROP CHARACTER SET, CREATE/DROP
COLLATION, CREATE/DROP TRANSLATION., INSTEAD OF TRIGGER.

MySQL identifier names
The rules for building MySQL identifier names are simple:

• In the first character position, MySQL accepts an alphanumeric, '_' or '$', but
some RDBMSs forbid digits here, so for portability do not use them.

• The first character of the name of a database, table, column or index may be
followed by any character allowed in a directory name to a maximum length of
64, or 255 for aliases. For portability, a safe maximum is 30.

• Identifiers can be qualified (tblname.colname), and quoted by backticks
(`tblname`) or by double quotes if sql_mode includes ansi_quotes.

• Unquoted identifier names cannot be case-insensitive-identical with any keyword.
MySQL permits use of reserved words as identifiers if they are quoted. Don't do it! It
complicates writing SQL commands, and it compromises portability. Likewise for the
underscore. MySQL now has a page pointing to version-specific lists of reserved words.

MySQL comments
MySQL accepts three comment styles:

• # marks everything to the right of it as a comment;
• so does -- ; the dashes must be followed by a space;
• /*...*/ marks off an in-line or multi-line comment, but if it contains a semi-

colon or unmatched quote, MySQL will fail to detect the end of the comment.

mailto:user@host
http://dev.mysql.com/doc/mysqld-version-reference/en/mysqld-version-reference-reservedwords.html

MySQL Command Syntax Page 89

A /*...*/ comment beginning with '!' followed by a version string tells MySQL to
execute the string following the version string if the current server is that version or later.
Thus CREATE /*!32302 TEMPORARY */ TABLE ... creates a temporary table in MySQL if the
server is 3.23.02 or later; the commented text is ignored outside MySQL.

MySQL Operators
MySQL has four kinds of operators: logical,
arithmetic, bit, comparison.
Logical operators: There are five (Table 6-3).
MySQL uses || as a synonym for OR, so under
MySQL the ANSI SQL expression "join"
|| "this" returns zero! To concatenate
strings, use CONCAT().
Remember that operations on NULLs follow the rules of three-valued logic (Table 6-4):
NULL is never equal to NULL, a known value OR NULL = the value, and a known value
AND NULL is NULL.

Arithmetic operators: MySQL has 7
(Table 6-5). There is no exponential
operator; to raise a number to a power
use POWER, SQRT, LOG10, LOG or EXP.

Bit operators (Table 6-6) use 64-bit
BIGINT numbers.

Comparison operators (Table 6-7)
apply to numbers, strings and dates,
returning 1 (TRUE), 0 (FALSE), or NULL.
Data conversions are automatic as the
context requires, on these rules:
1. Except with <=>, if any argument is
NULL, the result is NULL.
2. If both arguments are strings, they
are compared as strings; if both are
integers, they are compared as integers.

3. MySQL treats hex values as binary
strings except in numeric comparisons.
Beware that INNODB ignored trailing
whitespace in BINARY- VARBINARY
comparisons until 5.0.18. Now white-
space is not ignored.
4. Before 5.0.42 and 5.1.18, DATE-
DATETIME comparisons ignored time.
Since then, MySQL coerces the TIME portion of DATE to 00:00:00; CAST(datevalue AS

Table 6-3: Logical operators in MySQL
Syntax Meaning
x OR y, x || y 1 if either x or y is non-zero
x XOR y 1 if odd no. of operands non-zero
x AND y, x && y 1 if x and y are non-zero
NOT x, !x 1 if x is zero
x IS y 1 if x is y

Table 6-4: Three-valued logic

 OR AND IS

 true false null true false null true false null

true true true true true false null true false false

false true false null false false false false true false

null true null null null false null false false true

Table 6-5: Arithmetic operators in MySQL
Operator Syntax Meaning

+ x+y addition
- -x negative value
- x-y subtraction
* x*y multiplication
/ x/y division

DIV x DIV y integer division
%, MOD x%y modulo, same as MOD(x,y)

Table 6-6: Bit operators in MySQL
Syntax Meaning Example
x | y bitwise OR 29 | 15 = 31
x & y bitwise AND 29 & 15 = 13
x ^ y bitwise XOR 29 ^ 15 = 18
x<<y shift x left y bits 1<<2=4
x>>y shift x right y bits 4>>2=1

MySQL Command Syntax Page 90

DATE) emulates the earlier behaviour.
5. If one operand is TIMESTAMP or DATETIME and the other is a constant, the constant is
converted to a timestamp before the comparison, so in thisdate > 020930, 020930 will
be converted to a timestamp.
6. Otherwise operands are compared as floats, so SELECT 7>'6x' returns TRUE.

Table 6-7: Comparison operators in MySQL
Operator Syntax Meaning

= x=y true if x equals y
<>, != x<>y, x!=y true if x and y not equal

< x<y true if x less than y
<= x<=y true if x less than or equal to y
> x>y true if x greater than y

>= x>=y true if x greater than or equal to y

<=> x<=>y true if x and y are equal, even if both are NULL (but
5<=>NULL is false, 5=NULL and 5<>NULL are NULL)

[NOT] IN(…) x [NOT] IN (y1,y2,... | subquery) true if x (not) in list or subquery result
= ANY | SOME = ANY | SOME(subquery) true if any row satisfies subquery

<> ANY | SOME <> ANY | SOME(subquery) true if some row does not satisfy subquery
 = ALL = ALL(subquery) true if every row satisfies subquery
<> ALL <> ALL(subquery) same as NOT IN(subquery)

[NOT] BETWEEN … AND x [NOT] BETWEEN y1 AND y2 true if x (not) between y1 and y2
x [NOT] LIKE y [ESCAPE

'esc_char'] x [NOT] LIKE y [ESCAPE c] true if x does [not] match pattern y; if given, use
escape_char bounded by single quotes in place of '\'

[NOT] REXEXP | RLIKE x [NOT] REGEXP | RLIKE y true if x does (not) match y as extended reg. expression
SOUNDS LIKE x SOUNDS LIKE y true if SOUNDEX(x) = SOUNDEX(y)
IS [NOT] NULL x IS [NOT] NULL true if x is [not] NULL

BINARY BINARY x <op> y Treat x case-sensitively in string comparison <op>

To read the rest of this and other chapters, buy a copy of the book

TOC Previous Next

http://www.artfulsoftware.com/book.php?action=buy
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1.pdf
https://www.artfulsoftware.com/mysqlbook/sampler/mysqled1ch05.pdf

	MySQL Command Syntax
	Structured Query Language
	The MySQL variant of SQL
	Notable MySQL variations from SQL92
	MySQL identifier names
	MySQL comments

	MySQL Operators

